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Abstract

The field of socially assistive robotics (SAR) aims to build
robots that help people through social interaction. Human so-
cial interaction involves complex systems of behavior, and
modeling these systems is one goal of SAR. Nonverbal
behaviors, such as eye gaze and gesture, are particularly
amenable to modeling through machine learning because the
effects of the system—the nonverbal behaviors themselves—
are inherently observable. Uncovering the underlying model
that defines those behaviors would allow socially assistive
robots to become better interaction partners. Our research in-
vestigates how people use nonverbal behaviors in tutoring ap-
plications. We use data from human-human interactions to
build a model of nonverbal behaviors using supervised ma-
chine learning. This model can both predict the context of
observed behaviors and generate appropriate nonverbal be-
haviors.

Introduction
Socially assistive robotics (SAR) is a subfield of robotics
that aims to design, construct, and evaluate robots that help
people through social interactions (Feil-Seifer and Matarić
2005). Applications of SAR include educational tutoring
(Kanda et al. 2004), eldercare (Wada and Shibata 2007), and
therapy (Scassellati, Admoni, and Matarić 2012).

Efficient, intuitive human-robot communication is criti-
cal to SAR. People perform much of their communication
nonverbally, using behaviors like eye gaze and gesture to
convey mental state, to reinforce verbal communication, or
to augment what is being said (Argyle 1972). Though these
nonverbal behaviors are generally natural and effortless for
people, they must be explicitly designed for robots. As SAR
applications become more common, there is a growing need
for robots to be able to use nonverbal communication.

Because people are so attuned to nonverbal communi-
cation, robot behavior must follow human expectations. If
robots generate social behavior that is outside of the estab-
lished communication norms, people will be confused or re-
ject the robot interaction outright. Therefore, any approach
to designing social behaviors for robots must be informed
by actual human behavior.
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Figure 1: A model for nonverbal communication in SAR ap-
plications must be able to both predict the context of ob-
served behaviors and generate appropriate behaviors for a
desired context.

Fortunately, nonverbal communication is a particularly
good candidate for supervised machine learning. Because
nonverbal behaviors are inherently observable, these obser-
vations can be used to train a model of communication that
can inform a robot’s behaviors.

Our research focuses on improving human-robot interac-
tion in SAR applications by modeling the complex dynamics
of human communication. We do so by building models of
human-human nonverbal communication and implementing
these models to generate socially appropriate and commu-
nicative behavior for socially assistive robots. These data-
driven models allow us to design robots that match people’s
existing nonverbal communication use.

Some researchers have begun to address this need for
data-driven robot behavior models. For example, researchers
have modeled conversational gaze aversions (Andrist et al.
2014) and gesture during narration (Huang and Mutlu 2013)
based on analysis of human-human pairs. While these stud-
ies show promising advances in data-driven models of robot
behavior, none of them deals directly with socially assis-
tive applications, which require monitoring of—and feed-
back from—the interaction partner.

Modeling Human Interactions
Unlike previous work, our model is bidirectional, enabling
both the prediction of a user’s intent given observed nonver-
bal behaviors, and the generation of appropriate nonverbal



Category (label) Vocabulary
Context (C) Fact, spatial reference, demonstration, floor maintenance, interactive, other
Gaze (A) Partner, referent, own gesture, other
Gesture (E) Iconic, metaphoric, deictic, beat, demonstration, functional, other
Gesture style (S) Sweep, point, hold, move
Affiliate (F ) Map, box, player token, partner face, partner hands, partner cards, etc.

Table 1: The coding vocabulary used to extract data from the human-human interaction video.

Figure 2: A frame from a human-human teaching interaction
used to train the model.

communication behaviors for a robot (Figure 1).
There are three steps in the process of designing a data-

driven generative behavior model: 1) collect data on non-
verbal behaviors during human-human interactions, 2) train
a predictive computational model with the human-human in-
teraction data, and 3) develop a generative model for robot
behaviors driven by the computational model from step 2.

To collect data about human interactions, we analyzed
typical teaching interactions between pairs of individuals.
One of the participants (the teacher) was asked to teach a
second participant (the student) how to play a graph-building
board game called TransAmerica. This game was chosen be-
cause the spatial nature of gameplay encouraged many non-
verbal behaviors such as pointing.

We video and audio-record the teaching interaction (Fig-
ure 2), which was used as data for our model. Teaching in-
teractions lasted approximately five minutes per dyad. To ex-
tract data from the video recordings, we manually annotated
the nonverbal behavioral features identified in Table 1.

Each annotation can be described by a tuple
(a, e, s, fa, fe) where a ∈ A is gaze behavior, e ∈ E
is gesture behavior, s ∈ S is gesture style (which indicates
how the gesture was performed), and fa, fe ∈ F are
real-world objects or locations that gaze and gesture were
directed toward, respectively. Each annotation has at least
one non-null value in the tuple, though not all values need
be non-null. Annotations are labeled with a context c ∈ C
that defines the subject or purpose of the communication.

With this representation, we can conceptualize the annota-
tions as labeled points in high-dimensional space. New ob-
servations of nonverbal behavior can be classified using a
k-nearest neighbor algorithm. To classify a new sample, the
algorithm finds the k closest training samples and assigns
the new observation a context based on a majority vote of c
for those samples. This model allows our system to predict
the context of new observations of nonverbal behaviors.

Generating Robot Behavior
To generate robot behavior, the system first identifies the de-
sired context of the communication. Currently this is pre-
specified by labeling each robot utterance with a context
and, optionally, an affiliate. For example, a segment of robot
speech that refers deictically to the map, such as “you can
build on any of these locations,” is labeled with the spatial
reference context and the map affiliate.

To select appropriate behaviors given the context, the sys-
tem finds the largest cluster of examples of that context in
the high-dimensional feature space, and selects the behav-
iors based on the tuple values in that cluster. In other words,
the system finds the behaviors that were most often observed
in that context. To generate more behavior variability, and to
account for contexts in which there is more than one “right”
behavior, the system can identify all of the tuples labeled
with the context, and select behaviors by weighting the prob-
ability of selecting a set of tuple values by how many exam-
ples there are of those values labeled with the desired con-
text.

In the teaching example, a spatial reference context was
most often found with a = referent, e = deictic, s = point,
fa = map, and fe = map. Therefore, when performing the
speech utterance labeled with the spatial reference context,
the robot would make a deictic pointing gesture toward the
map, while looking at the map.

Future Work
Real-time learning and adaptation remains a challenge of
socially assistive robotics. People’s preferences and knowl-
edge change over time, and good SAR systems should be
capable of adapting in real time based on continuously
collected training samples. The current model is capable
of such real-time adaptation given the appropriate training
samples. However, classifying these samples online can be
difficult. While there have been significant improvements
in body posture recognition, gaze tracking, and natural lan-
guage processing (for context recognition), real-time sens-
ing is not yet reliable enough for this application.
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