
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on 
servers, or to redistribute to lists, requires prior specific permission and/or a fee. 
Request permissions from permissions@acm.org. 
ETRA 2014, March 26 – 28, 2014, Safety Harbor, Florida, USA. 
Copyright © ACM 978-1-4503-2751-0/14/03 $15.00 

Saliency-based Bayesian Modeling of Dynamic Viewing of Static Scenes

Daniel J. Campbell∗

Child Study Center
Yale University

Joseph Chang†

Department of Statistics
Yale University

Katarzyna Chawarska‡

Child Study Center
Yale University

Frederick Shic§

Child Study Center
Yale University

Abstract

Most analytic approaches for eye-tracking data focus either on iden-
tification of fixations and saccades, or on estimating saliency prop-
erties. Analyzing both aspects of visual attention simultaneously
provides a more comprehensive view of strategies used to pro-
cess information. This work presents a method that incorporates
both aspects in a unified Bayesian model to jointly estimate dy-
namic properties of scanpaths and a saliency map. Performance
of the model is assessed on simulated data and on eye-tracking
data from 15 children with autism spectrum disorder and 13 control
children. Saliency differences between ASD and TD groups were
found for both social and non-social images, but differences in dy-
namic gaze features were evident in only a subset of social images.
These results are consistent with previous region-based analyses as
well as previous fixation parameter models, suggesting that the new
approach may provide synthesizing and statistical perspectives on
eye-tracking analyses.
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1 Introduction

Approaches to analysis of eye-tracking data to understand the pro-
cesses directing visual attention frequently make use of a saliency
map, a topographical representation of a visual field in which re-
gions of high ‘salience’ or visual interest are assigned higher val-
ues [Koch and Ullman 1985]. Saliency maps play an integral part
of some computational models explaining observed processes of
selective attention [Itti et al. 1998; Itti and Koch 2000; Bruce and
Tsotsos 2005]. However, models that investigate saliency often dis-
regard dynamic properties of visual movement by preprocessing the
data to extract fixations and using only the cleaned fixation loca-
tions to estimate saliency. Features of the eye-movement process,
such as duration of fixations, subtle movements within fixations, or
distributions of saccade lengths are not considered, and as such the
models emphasize ‘where’ fixations are assigned on the saliency
map at the expense of ‘how.’
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Instead of estimating the entire saliency model, some approaches
estimate relative salience of portions of the stimulus through re-
gions of interest (ROIs). This approach involves dividing a stimulus
into important regions such as faces, eyes, and mouths of people,
the background, and objects, and calculating the proportions of fix-
ation time allocated to each region [Lewkowicz and Hansen-Tift
2012; Johnson et al. 2003; Richardson and Dale 2005]. ROI mea-
sures are faster and simpler to estimate than the entire saliency map,
but are still based on features of salience and therefore the approach
still neglects the dynamic properties of eye movement. The ROI ap-
proach also introduces biases in favor of a priori hypotheses, with
attention towards areas not coded with their own regions impossi-
ble to characterize. This top-down assignment of regions by the
researcher can be advantageous in testing hypotheses of attention
in controlled experiments, but can preclude discovery of interesting
but novel regions of interest in naturalistic viewing paradigms.

On the other hand, many analyses take the opposite approach and
analyze gaze movements without regard to saliency [Rimey and
Brown 1991; Yamato et al. 1992; Salvucci and Goldberg 2000;
Feng 2006], including entropy-based methods to estimate variabil-
ity of eye movements [Shic et al. 2008a; Harris Sr et al. 1986].
Such approaches yield important information regarding the pattern
and distribution of gaze shifts in response to visual stimuli, but do
not take into account the effect that relative saliency of different
stimuli can have on eye movements, and vice versa. In addition,
these approaches are complicated by the need to specify fixation
patterns using information exterior to the model [Shic et al. 2008c].

While application of different yet separate approaches to the same
data can address this dichotomy, doing so neglects the interplay be-
tween saliency and dynamic eye movement that can be studied us-
ing a single, integrated framework. Recent work has combined dy-
namic and saliency aspects of visual attention into unified models
of attention [Brockmann and Geisel 2000; Renninger et al. 2007;
Van Der Lans et al. 2008]. In this vein, we propose a new model for
frame-by-frame (rather than fixation-by-fixation) eye movement on
an estimated saliency map that does not heavily rely on preprocess-
ing of data into fixations and saccades.

Performance of the model will be assessed using simulated data
as well as eye-tracking data collected on a sample of two-year-
old children with autism spectrum disorder or typical development,
with differences in both saliency and dynamic viewing compared
between groups. Individuals with autism spectrum disorder, a de-
velopmental disorder characterized by deficits in social communi-
cation and the presence of repetitive and restricted interests [APA
2013], frequently manifest altered patterns of visual attention to
social stimuli [Chawarska and Shic 2009; Klin et al. 2002; Dal-
ton et al. 2005; Norbury et al. 2009; Simmons et al. 2009, for re-
view]. Analysis of this sample here serves not only to validate the
proposed model on a well-characterized sample, but also to repli-
cate previously-reported group differences in salience and in fixa-
tion patterns identified using other approaches [Chawarska and Shic
2009; Shic et al. 2008b].
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2 Methods

2.1 Statistical Model

We propose a Bayesian model to generate and describe scanpaths
across a static scene that integrates dynamic, frame-by-frame view-
ing of a scene with global saliency properties. This model con-
tains three components: (1) a saliency map capturing the relative
importance of each part of the image, modeled as a bivariate Gaus-
sian mixture model; (2) a random walk component, specified by
a bivariate Gaussian component added to the mixture model de-
scribed above, whose variance is controlled by a bandwidth; and (3)
a multiplier, which controls the relative importance of the saliency
components and the random walk component.

Table 1: Descriptions of model components.

Model
Component

Model
Parameter Description

Saliency
map ω

Salience of coordinates in the
visual image. Modeled as a
bivariate Gaussian mixture
model with mixture weights ω.

Bandwidth β
Variability of movement within
fixations.

Multiplier µ Frequency of saccades.

Let zi0, zi1, zi2, ..., ziT denote the point-of-regard coordinates in
two-dimensional space for participant i at frames t = 0, 1, 2, ..., T
during a scanpath of a static image. Each participant i belongs to a
single group gi, and each group has its own saliency map. Let βi
and µi denote the bandwidth and multiplier, respectively, of partic-
ipant i.

The point of regard of participant i at frame t is modeled as follows:

1. zi0 is drawn randomly from the saliency map for group gi.

2. For t > 0, zi,t+1 is drawn from a bivariate Gaussian distribu-
tion (the random walk component) with mean zit and variance
βiI2 with probability µi

µi+1
. This simulates a fixation step.

3. For t > 0, zi,t+1 is drawn from the saliency map for group gi
with probability 1

µi+1
. This simulates a saccade step.

Alternatively, step 1 above can be replace with a draw from a ran-
dom walk component at a known central fixation point, if called for
in the experimental design.

This specification lends itself to two complementary interpreta-
tions. First, because the random walk component moves constantly
with the point of regard, it can be viewed as a ‘lens’ that distorts the
participant’s perception of the underlying saliency map. The band-
width and multiplier in this case describe the degree of distortion: a
small bandwidth and large multiplier would distort the saliency map
greatly, restricting the participant’s view to a small region centered
on the point of regard, while a large bandwidth and small multi-
plier would leave the saliency map relatively undisturbed, allowing
greater perception of the entire visual field. From this perspective,
the perceived saliency map is continuously being updated based on
the current point of regard, and no distinction is made between fix-
ations and saccades. The second interpretation treats movement
across the map as a hidden Markov model with two hidden states:
a fixation state, in which the next gaze point is drawn from the ran-
dom walk component, and a saccade state, in which the next gaze
point is instead drawn from any location on the saliency map. The
multiplier then determines the transition probabilities between these

two states, while the bandwidth only affects movements within the
fixation state.

More specifically, the saliency map for each group is modeled as a
Gaussian mixture model with K components, and has probability
density function

f(x; ν1, ...νK ,Σ1, ...ΣK , ω) =

K∑
i=1

ωiφνi,Σi(x)

where

φν,Σ(x) =
1

2π |Σ|1/2
exp

{
−1

2
(x− ν)TΣ−1(x− ν)

}
is the probability density function of a bivariate Gaussian random
variable with mean ν ∈ R2 and 2x2 variance-covariance matrix
Σ, and ω is a vector of non-negative mixture weights that sum to
one. The mean νi and variance Σi of each mixture component are
fixed; versions of this model in which the means and standard devi-
ations are allowed to vary will be explored in further work. It is not
necessary for Σi to be a diagonal matrix.

The vector of mixture weights, ω, for each group is assigned a
Dirichlet prior, which has probability density function

f(ω;α) = Γ

(
K∑
i=1

αi

)
K∏
j=1

ω
aj−1

j

Γ(αj)

with parameter vector α equal to a vector of 1’s of length K, and
Γ (·) is the Gamma function,

Γ(x) =

∫ ∞
0

tx−1e−tdt

The parameters βi and µi are individual-level random variables,
and are assigned prior distributions βi ∼ Exp

(
β̃gi

)
and µi ∼

Exp (µ̃gi) for each group gi, where Exp (·) denotes the exponential
distribution with probability density function

f(x;λ) =

{
λe−λx x ≥ 0

0 x < 0

with rate parameter λ. To describe systematic group differences in
the distributions generating these parameters, the mean parameters
β̃gi and µ̃gi are in turn assigned Exponential hyperprior distribu-
tions with rate parameters 0.01 (i.e. with mean and variance equal
to 100).

Estimation of posterior distributions of all parameters on real and
simulated data is done by Markov chain Monte Carlo (MCMC) sim-
ulation in Just Another Gibbs Sample (JAGS) [Plummer 2003]. For
simulated data, two MCMC simulations are performed: in the first,
the means and variances supplied to JAGS are the same ones used to
simulate the data so that accuracy of individual component weights
can be assessed, and in the second, the means and variances are
selected by k-means [MacQueen et al. 1967; Hartigan and Wong
1979] performed on the set of all zit points from both groups, and
computing the means and variances of the points assigned to each
cluster. For real data, means and variances are similarly selected by
k-means since the true underlying saliency structure is unknown.
MCMC results are analyzed in R version 2.14.0 [R Core Team
2013].
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Figure 1: Examples of simulated scanpaths with different values
for bandwidth and multiplier parameters. Each scanpath is 300
frames in length.

Examples of simulated scanpaths with various bandwidth and mul-
tiplier values are shown in Figure 1. The examples illustrate that the
bandwidth controls movement within each fixation, with small val-
ues allowing little movement but large values permitting more. The
multiplier, on the other hand, controls how many saccade steps are
taken; small multipliers yield more saccade steps than large values.
This is due to the fact that the multiplier controls the probability of
taking the next step from the global saliency map, and this is virtu-
ally the only situation where a large saccade step may be taken.

This model generates a saccade in one frame regardless of its dura-
tion, so each saccade step must be interpreted as the endpoint of a
saccade. In practice, due to physical constraints on eye movement,
saccades are not taken instantaneously but are instead spread out
across multiple consecutive frames, where the number of frames re-
quired to complete the saccade is dependent on the saccade length,
the velocity of the eye, and the rate of frame capture. To account for
this, steps for which the spatial distance between consecutive points
of regard zi,t and zi,t+1 exceeds a threshold can be interpolated
with additional, intermediate points of regard. In this work, the in-
termediate points were assigned along the vector connecting zi,t
and zi,t+1 with velocity increasing linearly until the midpoint and
decreasing linearly thereafter. Conversely, to splice out frames inte-
rior to saccades when analyzing real data, a preprocessing saccade-
identification step was applied using the hysteresis method and sac-
cade frames were removed.

2.2 Participants

The model was applied to scanpaths from a sample of 28 children
between 8 and 43 months of age who participated in eye-tracking
experiments at a university-based clinic at the Yale Child Study
Center. Based on clinical evaluations at the age of 24-36 months,
15 of these children were assigned a best estimate clinical diagnosis
of autism spectrum disorder (ASD). Diagnoses were based on stan-
dardized test results including the Mullen Scales of Early Learning
(MSEL) [Mullen 1995] to measure language and cognitive skills
and the Autism Diagnostic Observation Schedule (ADOS) [Lord
et al. 2000] to assess the severity of autism symptoms, as well as
medical and family history. The remaining 13 children were not
diagnosed with any developmental disorders and were considered
typically-developing (TD), confirmed through assessment with the
MSEL and a parent interview concerning medical and developmen-
tal history. Sample characterization for the children is shown in Ta-

Table 2: Sample characterization

ASD (n=15) TD (n=13) p-
value

% Male 93.3% 58.3% .09
% Caucasian 80.0% 84.6% .86
% Hispanic 10.0% 0.0% .71
Age (months) 24.0 (7.5) 21.9 (7.7) .47
MSEL Visual
Reception DQ

80.1 (25.1) 104.6 (25.7) .06

MSEL Fine
Motor DQ

85.8 (19.8) 105.5 (18.8) .04

MSEL
Receptive
Language DQ

52.4 (34.5) 94.5 (19.8) .003

MSEL
Expressive
Language DQ

61.8 (32.0) 85.6 (15.4) .04

MSEL
Nonverbal DQ

82.9 (21.2) 105.1 (19.1) .03

MSEL Verbal
DQ

57.1 (32.2) 90.1 (16.4) .008

ADOS SA 15.1 (3.1) - -
ADOS RRB 5.0 (2.0) - -
ADOS Total 20.1 (4.3) - -
ADOS severity
score

7.8 (1.7) - -

Abbreviations: MSEL, Mullen Scales of Early Learning; DQ,
developmental quotient; ADOS, Autism Diagnostic Observation
Schedule; SA, social affect; RRB, restricted and repetitive behav-
iors.

ble 2. The study was approved by the Human Investigations Com-
mittee of Yale University, and an informed written consent was ob-
tained from all parents prior to testing.

2.3 Stimuli and Apparatus

Stimuli consisted of twelve color images, six of faces and six of
blocks. Face images were selected from the Karolinska Directed
Emotional Faces database [Lundqvist et al. 1998], and depict affec-
tively neutral female faces. Each image was 10.8 x 15.2 cm in size
and was viewed on a 20” widescreen LCD monitor from a distance
of 75 cm, so that each image subtended 8.2 x 11.6 degrees of visual
angle. Each stimulus was presented as a separate trial, with faces
and blocks presented in a predetermined but randomly assigned or-
der.

Gaze trajectories were recorded at a sampling rate of 60 Hz using
a SensoMotoric Instruments iView XTMRED eye-tracking system
[Sen 2005]. Eye-tracking data were pre-processed for data calibra-
tion and blink detection using custom software written in Matlab
[MathWorks 2010].

2.4 Experimental Protocol

Stimuli were presented in the context of a fixed-level Visual Paired
Comparison (VPC) paradigm [Fantz 1964] to assess visual discrim-
ination and recognition of faces. In each trial, the stimulus was
presented for 10 seconds in a familiarization phase, followed by
side-by-side presentation of the original stimulus and a novel stim-
ulus of similar type in a recognition phase. In the VPC paradigm,
recognition is measured by a difference in looking time between
the familiar and novel stimuli [Kaplan et al. 1995]. However, for
our purposes, only data from the 10 second familiarization phase is
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analyzed as our focus is on naturalistic gaze viewing patterns rather
than recognition.

During eye-tracking, toddlers were seated in a car seat in a dark,
soundproof room. Each eye-tracking session began with a short
cartoon video to help the child get settled. A five-point eye-tracking
calibration procedure was then initiated, with the calibration re-
peated if necessary until all five calibration points were success-
fully identified. Each stimulus image was preceded by a central
fixation to refocus the attention of the child, and then the stimulus
was displayed for as long as necessary for the child to attend to
the image for 10 seconds. Because the presentation of the central
fixation attracts attention to the center of screen, this could create
an artifact of increased salience of this central region if the initial
frames were included in analysis. To limit the effect of these cen-
tral fixation artifacts on saliency estimation, the first 30 frames (0.5
seconds) of each scanpath were not included in analysis. Scanpaths
for whom calibration uncertainty, defined as the average absolute
deviation between experiment-wide calibrated scanpaths and a set
of scanpaths cablibrated using nearest-neighbor calibration points
[Shic 2008], was greater than 2◦ of visual arc over the whole exper-
iment were excluded from analysis, with average calibration error
less than 3/4◦.

3 Results

3.1 Simulated Data

Bandwidth and multiplier parameters for 40 participants from two
groups (20 participants per group) were generated according to the
exponential distributions described above, with β̃1 = 0.02, β̃2 =
0.04, µ̃1 = 20, and µ̃2 = 10.

Saliency maps for the two groups were a mixture of 25 Gaussian
components arranged in a 5x5 grid. For Group 1, components in
the top three rows received mixture weights of 10/160 and compo-
nents in the bottom two rows received weights of 1/160. For Group
2, mixture component weights were 10/160 for the rightmost three
columns, and 1/160 for the leftmost two columns. Contour maps
of these surfaces are shown in Figure 2. These maps were se-
lected because they share regions of equal saliency at both high
and low saliency levels, as well as regions where each group has
higher saliency than the other. The saliency maps combined with
the bandwidth and multiplier parameters were then used to simulate
a single scanpath for each of 40 participants for T=600 frames (10
seconds).

Distributions of the posterior distributions for mixture weights,
bandwidths, and multipliers for each image were simulated by
15,000 MCMC samples with every 30th sample retained, after a
burn-in period of 5,000 samples. This provided a sample of 500
draws for each parameter’s posterior distribution to be used in esti-
mation of posterior means and quantiles. Credible intervals for each
parameter were estimated by 2.5% and 97.5% sample quantiles of
the posterior samples.

Estimation of group saliency maps via MCMC was quite accurate,
regardless of whether the true 25 mixture components or the 30
k-means-determined mixture components (Figure 2) were supplied
to the model. Estimation of individual bandwidth and multiplier
parameters was also accurate, as shown in Figure 3; true and esti-
mated parameter values were nearly equal, and in only a few cases
did a 95% credible interval exclude the true value. Variability of
the parameter estimates increased with parameter magnitude due to
the use of the Exponential distribution as prior distributions in the
model, for which the variance is equal to the mean. Estimates of
β̃ and µ̃ were also quite accurate (Figure 4). Posterior mean values

Figure 2: Contour plots of group saliency maps for simulated data:
true surface (top left), estimated via MCMC with true Gaussian
mixture components (top right), and estimated via MCMC with
Gaussian mixture components initialized by k-kmeans (bottom left).

for β̃1, β̃2, µ̃1, and µ̃2 were 0.021, 0.036, 23.01, and 11.98, respec-
tively, which are very close to the true values of 0.02, 0.04, 20, and
10.

3.2 Experimental Data

3.2.1 Saliency Results

For all images, saliency was overwhelmingly placed on inner face
regions (eyes, nose, and mouth). Relative saliency between the
mouth and the eyes was higher in the TD group compared to the
ASD group, as shown in Figure 5. This distinction is especially
noticeable in the second image, where TD children looked almost
exclusively at the mouth and ASD children looked almost exclu-
sively at the eyes. This diagnostic difference in preference for the
eyes in the ASD group but preference for the mouth in the TD group
is consistent with previously reported findings using regions of in-

Figure 3: Estimated vs. actual bandwidth parameters (left) and
multiplier parameters (right) for each of the 40 simulated individ-
ual scanpaths.
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Figure 4: Samples from the posterior distribution for β̃ and µ̃ for
both groups. True values are β̃1 = 0.02, β̃2 = 0.04, µ̃1 = 20, and
µ̃2 = 10.

terest analysis [Chawarska and Shic 2009].

To verify that these saliency results are indeed convergent with
results from previous ROI approaches, we calculated the percent-
age of time each participant scanned ROIs corresponding to the
eyes and the mouth. Attention towards eyes (%Eyes) is higher in
ASD than in TD, while attention towards the mouth is lower in
ASD relative to TD (Figure 6). The eye-to-mouth ratio (defined
as %Eyes/(%Eyes+%Mouth)) is also larger in ASD relative to TD.
While these results are not statistically significant (p-values are .46,
.16, and .19 for %Eyes, %Mouth, and eye-to-mouth ratio, respec-
tively), this is likely due to low power to detect effects in this sam-
ple. Cohen’s d effect sizes are moderately large (d = 0.30, 0.56, and
0.51, respectively), and discrepancies in significance between this
study and [Chawarska and Shic 2009] likely reflect the fact that the
prior study includes data from two visits instead of the single visit
analyzed here. However, despite this lack of statistical significance
at the 0.05 level, the direction of the differences in group means is
consistent with saliency results described above.

Results for a subset of block images are shown in Figure 7. For
these images, substantial attention is drawn to the two circles, al-
though attention is not divided equally among them. Preference for
one circle over the other does not appear to be determined solely
by the circle’s color, as half of the images displayed preferences in
both groups for the green circle (as in the first row of Figure 7), and
the other half evidenced preference for the white circle (as in the
second row of Figure 7).

Figure 5: Heatmaps of estimated saliency for faces: stimuli (left),
estimated heatmaps for the TD group (middle), and estimated
heatmaps for the ASD group (right).

Figure 6: Means +/- one standard error of TD and ASD groups on
the key regions of interest (ROIs) of Eyes, Mouth, and Eye-to-Mouth
Ratio, defined as (%Eyes)/(%Eyes + %Mouth).

Also, certain surprising combinations of blocks in some images
attract substantial attention, as the central arrangement of white
and yellow blocks in the first row of Figure 7 exemplifies for both
groups, but especially so for the ASD group. Even considering
the possible explanation of enhanced saliency due to brightness, it
is not clear why this region should appear so salient while simi-
lar regions in other images (such as the white and yellow blocks
in the lower left corner of the second block image in Figure 7) do
not attract comparable levels of attention. The fact that such re-
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Figure 7: Heatmaps of estimated saliency for blocks: stimuli
(left), estimated heatmaps for the TD group (middle), and estimated
heatmaps for the ASD group (right).

gions are identified by this model as highly salient despite their
non-obviousness speaks to the advantage of this model over ROI-
based techniques. The very fact that such regions are difficult to
identify beforehand as potentially salient means that they would
never be selected as regions in ROI analysis, and their relevance to
group differences in saliency would not be noticed.

3.2.2 Bandwidth and Multiplier Results

When estimated values of β̃ in TD and ASD groups were com-
pared on faces, differences were quite large for three of the six
images, with 95% credible intervals for the differences excluding
zero (Figure 8, top). In these three images, the TD group had a
larger β̃ value than the ASD group, indicating a more focused gaze
during fixations for the ASD group. Cohen’s d effect sizes for the
three images were 2.35, 2.17, and 1.47. Group differences in β̃ for
block images were much smaller, with Cohen’s d effect sizes rang-
ing from 0.21 to 0.53, and all six 95% credible intervals overlapped
zero.

The fact that large differences in β̃ were discovered for only three
face images may be explained by the existence of extreme values.
For these three images, at least one participant from the TD group
had an estimated βi well outside the range of values for the other
participants, which had a large effect on the TD group mean. Be-
cause these extreme values represented different individuals across
images (that is, it was not the same participant producing the ex-
treme values in every image) and because it is not clear whether
such large βi values truly represent outliers or indicate an uncom-
mon but important phenonemon which our small sample cannot ad-
equately reflect, these participants were not removed from analysis.
Future work will explore selection of prior specifications on β̃ and
µ̃ that are less susceptible to outliers than the Exponential distribu-
tion.

When estimated values of µ̃ were compared, no large group dif-
ferences were evident for either face or block images (Figure 8,
bottom). Cohen’s d effect sizes ranged from -0.15 to 0.88 for faces,
and from -0.21 to 0.86 for blocks, and all 95% credible intervals

Figure 8: Means and 95% credible intervals for group differences
in bandwidth mean (β̃, top) and multiplier mean (µ̃, bottom), for
each of the twelve image stimuli. Credible intervals drawn in red
indicate exclusion of zero from the interval.

overlapped zero.

4 Discussion

We have presented here a new statistical model that integrates both
saliency and frame-by-frame dynamic gaze properties into a unified
framework. It accurately recovers known parameters from sim-
ulated data, and detects differences between typically-developing
and ASD groups in saliency and dynamic scene processing when
applied to real data.

Saliency differences found between ASD and TD groups include a
preference for the mouth over the eyes in typical development, but
a reversed preference in ASD. This difference was also observed in
attention to eye and mouth regions when the same data was ana-
lyzed using region of interest analysis, reflecting a convergence of
results using different approaches. This finding is consistent with
a similar, previously published study [Chawarska and Shic 2009],
where the disparity in statistical significance of findings between
that study and this one can be attributed to different methodologies
(a 2 Group x 2 Visit ANOVA model in the former versus a single
visit in the current study).

Saliency differences were also found in response to block stimuli.
While attention to certain aspects of the block images, like the two
circles contained in each, were expected and indeed observed in
both groups, the relative salience of the two circles to each other
differed widely by group and by image. Why this should be so is
unclear, as the differences in salience do not appear to be driven by
the color or position of the circles. Other regions of the block im-
ages besides the circles attracted differing levels of salience from
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each group as well, and the reasons for the enhanced salience of
these regions is likewise unclear. In fact, these regions would have
been missed entirely if only the circles had been coded as key re-
gions in an ROI analysis. The fact that the proposed model, be-
ing free of assumptions regarding the importance of regions, could
identify such regions anyway means that the model does not rely on
a priori assumptions regarding salience and can estimate saliency
properties in a purely bottom-up, data-driven approach. ROI-based
techniques are restricted in that they can only compare salience in
known regions, not discover new ones.

Differences in dynamic movement in fixations at the group level,
represented by a difference in β̃ between groups, were also found
in response to face stimuli, with typically developing children ex-
hibiting a significantly larger value of β̃ and hence decreased vari-
ability of movement within fixations. This difference in fixational
movement was not observed during block stimuli, nor were group
differences evident in the frequency of saccades (represented by µ̃)
during either facial or block stimuli. Although this is an intriguing
finding that has not been previously reported, there is a possibility
that it may be due to the employment of prior distributions in our
model that exhibit some susceptibility to outliers. Robustness of
this finding to changes in modeling assumptions will be assessed in
future work.

The saliency map in our model is parametrized as a Gaussian mix-
ture model with known components and unknown weights, and is
not built up from low-level properties of the scene like color, bright-
ness, and contrast. However, the number, location, size, and ori-
entation of mixture components can be flexibly chosen to reflect
knowledge of, and assumptions regarding, the underlying low-level
features of the scene, for instance by placing mixture components
with small variances on regions of high brightness or contrast. The
model can then be used to estimate the relative salience of such re-
gions, or even to estimate the dynamic patterns of eye movement on
an entirely specified saliency map. In this work we have selected
component means and variances in a data-driven fashion through
k-means, but the flexibility of the model presented here allows the
saliency map to reflect bottom-up image features if desired.

An important advantage of this model is the ability to make statisti-
cal inferences about the estimated saliency map. The posterior sam-
ples for the mixture component weights were used to calculate pos-
terior means, and thus estimated saliency heatmaps similar to what
could be obtained by other saliency-estimation approaches. How-
ever, the posterior samples also allow for estimation of the variance
of the mixture weights, and thereby quantify the variability of each
estimated saliency map. It is possible, for instance, to calculate
95% credible intervals for the difference between the estimated TD
and ASD saliency maps at any point of the screen, and to identify
regions where this pointwise interval does not overlap zero; these
results were not included here due to limited space. These posterior
inferences are possible with this model, but not easily made using
other heatmap approaches that only compute an estimated saliency
heatmap with no measure of variance.

4.1 Limitations and Future Directions

The means and variances of the mixture components making up
the saliency map in this model are fixed, and only mixture weights
are assigned distributions. Further extensions of the model include
allowing the means and variances to vary as well. While this is
straightforward in principle by the addition of prior distributions on
the means and precisions of the Gaussian components, in practice
this can add substantial computational cost to the model as well as
complicate convergence of the MCMC to the stationary distribu-
tion. Also, the interpolation of single-frame saccades so that they

span multiple frames is currently an additional step and not an in-
tegrated feature of the model, and incorporation of this step into
the model is an continuing area of research. Additional extensions
of this work include refinement of the prior distributions on band-
width and multiplier parameters to be more robust against outliers,
investigation of the convergence of the MCMC and sensitivity of
model results to changes in prior distributions, and the combina-
tion of multiple images into a single hierarchical model rather than
separate analyses for each image.
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