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Abstract—By designing socially intelligent robots that can
more effectively communicate and interact with us, we can
increase their capacity to function as collaborative partners.
Our research goal is to develop robots capable of engaging in
nonverbal communication, which has been argued to be at the
core of social intelligence. We take a human-centric approach that
closely aligns with how people are theorized to model nonverbal
communication. We propose a unified computational approach
to interactively learn the meaning of nonverbal behaviors for
inference and production. More specifically, we use a partially
observable Markov decision process model to infer an interac-
tant’s mental state based on their observed nonverbal behaviors
as well as produce appropriate nonverbal behaviors for a robot
to communicate its internal state. By interactively learning the
connection between nonverbal behaviors and the mental states
producing them, an agent can more readily generalize to new
people and situations.

I. INTRODUCTION

Robots have an immense potential to help people in
domains such as education, healthcare, manufacturing, and
disaster response. For instance, researchers have designed
robots that take steps towards helping children learn a second
language [1], assisting nurses with triage [2], and participating
as part of a search and rescue team [3]. As such robots
begin to collaborate with us, we believe the successful outcome
of the human-robot team depends on the robot’s ability to
effectively communicate and socially interact with everyday
people. The challenge thereby lies in imbuing robots with
social intelligence, which involves the ability to both express
and infer motives, intentions, and emotions to/from others.

Our research goal is to develop socially intelligent robots
capable of engaging in nonverbal communication, which has
been argued to be at the core of social intelligence [4].
We present a unified computational approach to interactively
learn the meaning of nonverbal behaviors for inference and
production. To understand how a robot could produce mean-
ingful nonverbal behaviors, we begin with an investigation
into literature with a focused attention to current state-of-the
art approaches and theories on nonverbal production (Section
II: Background). From these works, we gain insights into
the underlying representation and design constraints when
computationally modeling nonverbal communication (Section
IIT: Model Representation). We detail our proposed approach
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Fig. 1: Nonverbal communication includes the ability to both
express and infer motives, intentions, and emotions (mental
states) to and from others using nonverbal behavior.

in using a partially observable Markov decision process model
to infer mental states based on observed nonverbal behaviors
as well as to produce nonverbal behaviors based on a given
mental state (Section IV: Proposed Work). Lastly, we conclude
by comparing our approach to prior approaches to establish the
novelty of our proposal (Section V: Related works).

II. BACKGROUND

To understand how an agent (robotic or human) could
produce meaningful nonverbal behaviors, we investigate prior
approaches and theories on nonverbal production from diverse
fields such as Embodied Conversational Agents, Social Signal
Processing, and Social Psychology.



A. Embodied Conversational Agents

The field of Embodied Conversational Agents (ECA) has
predominately lead the research on nonverbal production for
virtual agents. Researchers working on ECAs focus on how
a virtual agent can interact with humans using both language
and nonverbal behavior. Frameworks, such as the Behavior Ex-
pression Animation Toolkit, enable animators to translate from
input-text (i.e., a sentence to be spoken by a virtual agent) to
synchronized nonverbal behaviors and synthesized speech [5].
Based on the input-text’s linguistic and contextual analysis, the
toolkit determines the appropriate behavior rules to apply when
generating the co-verbal gestures. For example, a behavior rule
would suggest a gaze-away behavior at the beginning of an
utterance 70% of the time to establish conversational turn-
taking.

The ECA community has moved to formalize a generic
behavior generation framework, which defines a Function
Markup Language (FML) and a Behavior Markup Lan-
guage (BML) [6], [7]. The FML describes an agent’s intent
or internal state (e.g., the agent is confused or wants to take a
turn speaking), while the BML describes the physical behavior
the agent should perform (e.g., eyebrows up or head-shake).
This generic framework leaves open the possibility to design a
module to transform the high-level FML to the low-level BML
using planning algorithms, rule-based systems, etc. But many
frameworks use hand-crafted behavior rules for this mapping
(81, [9], [10].

B. Social Signal Processing

The Social Signal Processing (SSP) community, in com-
parison to the ECA community, has a more data-driven ap-
proach to behavior generation [11], [12]. Morency et. al.
built probabilistic models that can learn from human-to-human
interactions to predict when a listener should nod in a dyadic
conversation [13]. Based on the speaker’s nonverbal behaviors
(e.g., their gaze behavior or pauses in their speech), the
model learns the probability of a listener’s nod occurring.
Without attending to the literal spoken contents, the model is
automatically learning associations between a speaker’s non-
verbal behaviors and a listener’s nodding behavior. Once the
prediction model is trained on the human-human interaction
data, it is used to drive the nodding behavior of a virtual
listening agent.

C. Social Psychology

From the field of Social Psychology, classical theories
of human nonverbal communication fall between two major
perspectives. The theory of nonverbal leakage views mental
states as direct influencers of nonverbal behaviors. These
nonverbal behaviors, which are thought to occur largely outside
of people’s conscious control, reveal or “leak” information
about a person’s underlying intentions or emotions [4], [14].
According to this perspective, a frown is a direct “hard-wired”
production of a person being sad. The theory of nonverbal
influence views nonverbal behaviors as expressive signals that
communicate or influence others. These nonverbal behaviors
primarily function to affect a perceiver. According to this
perspective, a frown is produced to communicate sadness or
to elicit a hug from a perceiver [15]. Although different in
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Fig. 2: Theories of nonverbal leakage and influence share a
common representation in which nonverbal behaviors, whether
intentional or unintentional, are manifestations of an implicit
or explicit mental state.

their definitions, these two theories have similar underlying
representations. As illustrated in Figure 2, both theories have
in common that nonverbal behaviors, whether intentional or
unintentional, are produced from some given implicit or ex-
plicit mental state.

Modern theories of nonverbal production emphasize the
contextual nature of nonverbal behaviors. Rather than assum-
ing an one-to-one correspondence between a specific behavior
and its underlying meaning (like a smile always meaning hap-
piness), the meaning of nonverbal behaviors is dependent on
the context in which they are embedded [16]. For example, an
eye-roll in conjunction with a large grin can be more accurately
interpreted as conveying humor, whereas observing an eye-
roll in isolation could lead to the less accurate interpretation
of contempt. The interpretation of the eye-roll is contingent
upon the observation of the grin. Beyond temporal dependence,
other contextual factors including setting, culture, gender, and
personality affects how an individual encodes and decodes
nonverbal behavior [17].

III. MODEL REPRESENTATION

Given what we have learned from classical theories, mod-
ern theories, and prior frameworks of nonverbal communica-
tion, we define design parameters to constraint a computational
model representation. We then detail our proposed nonver-
bal communication framework based on partially observable
Markov decision process models, which satisfy the specified
design parameters.

A. Design Parameters

By investigating prior works in various research areas, we
found three different perspectives on how an agent (robotic
or human) produces nonverbal behaviors. The embodied con-
versational agents community has focused on producing non-
verbal behaviors to accompany spoken text through predefined
rules. We view ECA’s approach as a function mapping from
input text to nonverbal behaviors (as shown in Equation 1a).
Alternatively, the social signal processing community uses
data-driven methods to generate nonverbal behaviors for a



virtual agent in response to human behavior. We view SSP’s
approach as a function mapping from human behavior to agent
behavior (Equation 1b). Lastly, according to theories of human
nonverbal communication from the field of social psychology,
nonverbal behaviors are produced from some given implicit or
explicit mental state (Equation Ic).

f : input text — nonverbal behaviors (1a)
f : human behaviors — agent behaviors (1b)
f : mental state — nonverbal behaviors (1c)

Prior approaches have been successful in producing ap-
propriate nonverbal behaviors in one-shot interactions in well-
defined contexts, which systems built using pre-defined rules
and data-driven responses are capable of supporting. However,
when considering long-term interactions in various contexts,
these approaches are limited in their ability to generalize to
new and different situations unless more rules are created or
more data is collected. We therefore want to take a more
human-centric approach that closely aligns with how humans
are theorized to model nonverbal communication in anticipa-
tion of greater generalizability when a system’s underlying
representation is similar to that of people. This leads us to
our first design parameter for our computational nonverbal
communication model:

Design Parameter 1: the model representation
should follow that nonverbal behaviors are manifes-
tations of mental states.

Since the encoding and decoding of nonverbal behaviors
change depending on context, a system capable of interactively
learning from its environment can more readily adapt to new
people, situations, cultures, etc. As such, our second design
parameter includes:

Design Parameter 2: the model should be capable
of interactively learning from everyday people

Research in nonverbal inference and production has tradi-
tionally been treated as two separate problems. Researchers
working in domains such as social signal processing have
focused on interpreting nonverbal behaviors, while researchers
in domains such as embodied conversational agents have
focused on developing behavioral planners. By addressing both
inference and production in a unified model, we constrain
the model to share the same mechanism when encoding and
decoding nonverbal behaviors, which ensures that nonverbal
behaviors retain their meaning in both processes. This leads to
our final design parameter:

Design Parameter 3: the model should support both
inference and production of nonverbal behaviors

Given these three design parameters, we propose to develop
a unified computational approach to interactively learn the
connection between nonverbal behaviors and mental states.

B. Nonverbal Communication Framework

We propose a partially observable Markov decision pro-
cess (POMDP) framework that is capable of inferring an
interactant’s mental state based on their nonverbal behaviors

as well as produce appropriate nonverbal behaviors for a
robot to communicate its internal state. We take a Bayesian
reinforcement learning (RL) approach to interactively learn
the probability distribution of observing particular nonverbal
behaviors given a person’s mental state (i.e., the observation
probabilities). By relying on an interactant that provides op-
timal policy information, the system can gradually learn the
observation probabilities through experiences of execution and
learning. With more interaction episodes, we can eventually
converge on an observation model that can generate policies
that is similar to the interactant’s, which will enable the robot
to make decisions that demonstrate an accurate inference of
the interactant’s current mental state. Our system then reuses
this POMDP model learned for inference to also solve the
problem of nonverbal production, which we reframe as an
“inversion” of the inference problem (as inspired by Smith
and Lieberman’s work in natural language generation [18]).
This novel solution to nonverbal production requires minimal
modification to the inference model and is also solved using
inference techniques.

IV. PROPOSED MODEL

We describe our proposed nonverbal communication frame-
work through a simplified problem scenario. We define this
problem scenario as a POMDP model and detail the setup of
the model parameters. Using pre-existing methods as well as
our proposed novel method, we demonstrate how nonverbal
inference and production can be addressed in a unified com-
putational model.

A. Problem Illustration

We illustrate our research problem with the following
simplified scenario (also see Figure la):

Sarah sees a toy and starts to smile. She tells a story
of seeing something similar on TV in a happy tone
of voice. She excitedly fidgets and leans forward to
get closer to the toy. Sarah really wants this toy.

B. POMDP Setup

Framing this problem as a POMDP model, Sarah’s men-
tal state of either wanting the toy or not wanting the toy
S: {Sw, Sz} is partially observed through her nonverbal ex-
pressions such as smiling, happy tone of voice, leaning for-
ward, and fidgeting. The robot maintains a belief state, which
is characterized as a probability distribution over the world
states, which includes the probability that Sarah wants the toy
and the probability that Sarah does not want the toy.

_ )1 = b(Sw)
b(s) = {pz = b(sw)}

The robot can choose among 3 different actions. The robot
can decide to give the toy to Sarah, take the toy away, or
watch to gain more information about Sarah’s mental state
by observing her nonverbal behaviors A: {watch, give, take}.
The robot’s goal in this scenario is encoded by its reward
function. A positive reward (e.g., +100 ) is given when either

the following goal configurations are obtained a) Sarah has a
mental state of wanting the toy and the robot gives the toy
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r(Sw, give) = +100 | r(S4,give) = —100
r(Sw,take) = —100 | r(Sz,take) = +100
r(Sw,watch) = —1 r(Sg, watch) = —1

TABLE I: Reward probabilities

T:S xA—II(5)

p(Sw|Sw, give) = 0.5
p(Sw|Sw, give) = 0.5
P(Sw|Sw, give) = 0.5
p(S%|Sw. give) = 0.5

p(Sw|Sw, take) = 0.5
p(Sw|Sw, take) = 0.5
p(Sw|Sw, take) = 0.5
p(Sw|Sw, take) = 0.5

p(Sw|Sw,watch) = 1.0
p(S%|Sw,watch) = 0.0
p(Sw|Sw, watch) = 0.0
p(Sw|Sw, watch) = 1.0

TABLE II: Transition probabilities

0 8 x A1)

p(smile [Sy, give) = 0.5
p(frown|Sy, give) = 0.5
p(smile |Sy, give) = 0.
p(frown|Sy, give) = 0.5

ot

p(smile |Sy, take)
p(frown|Sy, take)

p(smile [Sy,,watch)
p(frown|Sw, watch)
p(smile |Sg, watch)
p(frown|Sy, watch)

TABLE III: Observation probabilities

b) Sarah has a mental state of not wanting the toy and the
robot takes the toy. A negative reward (e.g., -100) is given
when the opposite goal configuration is obtained. A small cost
(e.g., -1) is given for a watch action (see Table I).

The world’s state dynamics are encoded through the state-
transition function, which defines the probability of ending in
state s’ given that the agent starts in state s and takes action a.
For our particular scenario, the watch action does not change
the state of the world in that Sarah’s wanting of a toy does not
change due to the robot’s watch action. The give and take
terminating actions cause a transition to the world state of S,
with probability 0.5 and state S with probability 0.5, which
essentially resets the problem (see Table II).

To simplify our problem, let us assume that there are
only two possible observations O:{smile, frown}. Through
a watch action, the robot can observe the nonverbal behaviors
exhibited by Sarah to infer her underlying mental state. Given
that the robot took action a and Sarah’s mental state is s,
the observation function defines the probability of making
observation o. Under the assumption that our POMDP model
parameters are fully known, let us set the observation proba-
bilities to be “correct estimates,” or ones that closely resemble
Sarah’s. That is, if Sarah’s mental state is S,, (i.e., wanting
the toy), then there is a higher probability of observing her
smile over a frown. Similarly, if Sarah has a state S (i.e.,
not wanting the toy), then there is a higher probability of
observing her frown. These observations are only gained
from an information seeking action like the watch action;
other actions like give and take do not yield any helpful
observations (see Table III).

In our scenario, the observation function defines the prob-
ability distribution of observing various nonverbal behaviors
given a person’s mental state of either wanting or not wanting
the toy. But how does this function become defined? For this
scenario, how does a robot come to understand that observing
Sarah smile has the underlying meaning of her wanting the
toy? For nonverbal inference, the primary goal is to learn the
observation probabilities for this POMDP model.

C. Unified Model

We propose a unified model that shares the same un-
derlying mechanism when decoding and encoding nonverbal
behaviors by using a pre-existing method called Bayesian
reinforcement learning as well as our proposed novel method
we call belief-shaping through perspective-taking. By learning
the observation probabilities, the POMDP model is capable
of creating policies that will enable the robot to make appro-
priate decisions and take actions that demonstrate an accurate
inference of the interactant’s current mental state. Our system
reuses this inference model to also solve the problem of
nonverbal production, which we reframe as an “inversion” of
the inference problem. Although our approach is unified, we
will describe the details in two phases:

1)
2)

Nonverbal Inference (behaviors — mental state)
Nonverbal Production (mental state — behaviors)

D. Nonverbal Inference

We take a Bayesian reinforcement learning (RL) approach
to interactively learn the observation probabilities of our
POMDP model. Following the framework described by Atrash
and Pineau [20], a robot can gradually learn the observation
model through experiences with an interactant (i.e., an oracle)
that provides optimal policy information. The Bayesian RL
approach begins with some prior probability distribution over
all possible observation models. This prior can have some
helpful initial estimates based on domain knowledge, or if
no information is given then it begins as an uniform prior.
From this prior probability distribution (generally in Dirichlet
form), we sample a set of observation models to create a
variety of different POMDP models. Each model’s optimal
policy is computed using a solver such as value iteration
or policy iteration. The robot executes actions either based
on a randomly selected policy or by selecting actions with
the greatest expected value over all computed policies. If an
incorrect action is executed, the oracle is expected to correct
the robot’s actions by demonstrating the action that should
have been executed given the world state. For each of the
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Fig. 3: High-level step-by-step process of the Bayesian rein-
forcement learning method described by [19], [20].

policies that agreed with the oracle’s demonstrated action, their
observation models are used to update the hyperparameters of
the Dirichlet distribution. With more and more examples, this
maintained posterior distribution over the possible observation
models gets tightened up and moves in the direction of models
that can generate similar policies to that of the oracle. With this
updated posterior distribution, we resample some new models
and remove some old models. Through iterations of execution
and learning, we can eventually converge on an observation
model that enables the POMDP framework to produce policies
that is similar to the interactant’s (see Figure 3 for a diagram
of the Bayesian RL process).

E. Nonverbal Production

We take inspiration from Gray and Breazeal [22], [23] and
view nonverbal communication as a process of mental state
manipulation through physical actions. Given the constraints
of the world, we cannot directly communicate our mental state
to another person (i.e., telepathy as illustrated in Figure Sa).
Consequently, we communicate indirectly to others using the
world as our medium. To attempt to cause a mental state
change in another agent, we act in the physical world through
mechanisms such as speech and nonverbal behaviors. Since
mental states are only changed by the agent itself, we have
to act on and alter the world so that the agent’s perceptual
and mental processes will bring about a targeted change
(see Figure 5b). As such, we pose the problem of nonverbal
production as “acting” the appropriate behaviors such that
an observer can correctly infer the actor’s mental state. Our
approach is to use the learned inference model to also solve the
problem of nonverbal production by reframing it an inference
problem:

nonverbal production is to act nonverbal behaviors
such that the observer forms the desired mental state
inference.

[0.00, 0.06]

[0.06,0.38] [0.38,0.62] [0.62,0.93]  [0.93,1.00]

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

end belief

Fig. 4: An example of an optimal policy diagram for our prob-
lem scenario (original image courtesy of [21]). The highlighted
path is the shortest path from a particular starting belief to a
target belief given that three watch actions were taken by the
interactant. At each step, the robot should produce a smile
(S) behavior for the interactant to observe in order to shape or
manipulate their belief toward a target end belief.

For our toy scenario, the question then becomes “what
observations (i.e., nonverbal behaviors) should a robot produce
for Sarah so that she correctly infers the robot’s mental
state?” Assuming that the robot has learned a similar policy
to that of Sarah, the robot in essence asks “what would I
think if I were Sarah?” The robot maintains a distribution
of Sarah’s beliefs about the robot’s belief. This distribution
ranges from Sarah believing that the robot does not want the
toy to Sarah believing that the robot wants the toy. If the
robot has an internal state of wanting the toy, then this is the
target belief the robot wants Sarah to have. When the robot
sees that Sarah is taking a watch action, the question now
becomes, “what behavior does Sarah need to observe in order
to change her belief towards the target belief?” Based on the
learned inference model, the robot follows its optimal policy
to act/produce observations that would guide Sarah’s belief to
the target belief (see Figure 4 for an illustrated example).

We describe this novel process as belief-shaping through
perspective-taking, where the learned inference model is pro-
jected to Sarah’s perspective to determine what Sarah needs to
observe in order to shape or manipulate her beliefs.

V. RELATED WORKS

Similar to our proposed problem space and approach, prior
work by Hoey and Little [24], [25] focused on understanding
the meaning, or the affordances, of nonverbal behaviors us-
ing POMDPs. By learning the relationship between observed
human nonverbal behaviors and robot actions, their system
can learn that a person’s forward hand-gesture captured in
video images means that the robot should move forward. Much
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Fig. 5: Telepathy allows for direct communication from one’s
mental state to another’s. Given our world’s constraints, we
act in the physical world through mechanisms such as speech
and nonverbal behaviors, which are perceived by other agents.

of the complexity of this work comes from automatically
discovering and learning the salient nonverbal behaviors from
camera images. They trade off learning more everyday and rich
interaction behaviors for obvious nonverbal behaviors, which
are more perceptually recognizable. Furthermore, our approach
differs in its explicit representation of mental states as the
mediating factor between observed human nonverbal behaviors
and robot actions. Atrash and Pineau [20] similarly assume an
one-to-one mapping from human behavior to robot action. As
mentioned previously, we use their framework to interactively
learn the observation probabilities of the POMDP model. Their
framework gradually learns the relationship between a user’s
spoken intentions and robot actions. In their demonstration, an
autonomous wheelchair robot interactively learns that when a
user says “move forward” the robot should drive straight for
one meter.

Both of these related works focus on the inference problem
of interpreting human behavior. Our more holistic approach
addresses both inference and production in a single model
to ensure that nonverbal behaviors retain their underlying
meaning in both processes.
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