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Abstract

Fixation identification algorithms facilitate data comprehension and
provide analytical convenience in eye-tracking analysis. However,
current fixation algorithms for eye-tracking analysis are heavily de-
pendent on parameter choices, leading to instabilities in results and
incompleteness in reporting.

This work examines the nature of human scanning patterns during
complex scene viewing. We show that standard implementations
of the commonly used distance-dispersion algorithm for fixation
identification are functionally equivalent to greedy spatiotemporal
tiling. We show that modeling the number of fixations as a function
of tiling size leads to a measure of fractal dimensionality through
box counting. We apply this technique to examine scale-free gaze
behaviors in toddlers and adults looking at images of faces and
blocks, as well as large number of adults looking at movies or static
images.

The distributional aspects of the number of fixations may suggest
a fractal structure to gaze patterns in free scanning and imply that
the incompleteness of standard algorithms may be due to the scale-
free behaviors of the underlying scanning distributions. We discuss
the nature of this hypothesis, its limitations, and offer directions for
future work.
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1 Introduction

Many natural phenomena exhibit fractal or self-similar proper-
ties. For example, in one of the earliest reports regarding the self-
similarity of natural phenomena, Mandelbrot [1967] showed that
the length obtained by measuring the coastline of Britain depends
on the length of the ruler used to carry out this measurement.
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Since Mandelbrot [1967], hundreds of studies have been published
demonstrating self-similar or fractal qualities in nature. Fractal
properties have been found in the surfaces of sandstone and shale
[Wong et al. 1986], the fracture surfaces of metals [Mandelbrot
et al. 1984], the structure and distribution of rivers and river basins
[Rodrguez-Iturbe and Rinaldo 1997], coasts and continents [Man-
delbrot 1967; Mandelbrot 1975], and it seems everywhere in be-
tween, up to the perimeter of interstellar cirrus [Bazell and Desert
1988]. In ecology, fractal properties have been reported for the
flight patterns of albatrosses [Viswanathan et al. 1996], foraging
patterns of deer and bumblebees [Viswanathan et al. 1999], and
even movement of amoebas [Schuster and Levandowsky 1996].
Not content to be confined to the natural world, fractal analysis
has been applied to economics [Mandelbrot 1999], the artwork of
Jackson Pollock [Taylor et al. 1999], and investigations into the
topology of the internet [Faloutsos et al. 1999].

A few research groups have examined power laws in eye move-
ments. Notably, Brockmann and Geisel have developed a theoret-
ical framework for describing the distributional properties of eye-
movements as Lévy flights. Preliminary results seem to support
their model [Brockmann and Geisel 1999; Brockmann and Geisel
2000]. Similarly, Boccignone and Ferraro [2004] describe a the-
oretical model which grounds gaze patterns in terms of low-level
features and scene complexity, using a weighted Cauchy-Lévy dis-
tribution for jump lengths. Shelhamer, in a series of studies, has
demonstrated that predictive saccades exhibit long-term correla-
tions and fractal properties [Shelhamer 2005c; Shelhamer 2005a;
Shelhamer 2005b; Shelhamer and Joiner 2003]. Aks et al. [2002]
report similar findings in a search task when looking at the distance
between fixations, a value which is related to saccade amplitude.
Liang et al. [2005] use detrended fluctuation analysis to examine
the scaling exponents of saccade velocity in microsaccades. In this
paper, we will take advantage of the fractal properties of eye move-
ment, and develop a fixation identification method using box count-
ing.

Understandably, there has been a great deal of interest in the po-
tentially fractal nature of human scanning patterns. Qualitatively,
power law dynamics in two dimensional trajectories yield move-
ments that bear a striking resemblance to eye movements. For ex-
ample, in Figure 1 we employ an idealized model to demonstrate
saccade generation. We generated saccades amplitudes in power
law distribution, with the duration of each saccade being propor-
tional to the square root of its amplitude, following the square-root
main saccade rule proposed by Lebedev et al. [1996]. The resulting
trajectories seem to qualitatively share more similar qualities with
real eye movement patterns than trajectories generated with other
distributions, e.g. normally distributed step-lengths (Figure 1).

It is important to note that all of these studies exclusively focus on
the power-law behavior of saccades. From a data analytic view-
point there is a strong relationship between saccades and fixations
[Salvucci and Goldberg 2000], where saccade detection is often re-
garded as an inverse process to fixation identification (i.e. what is
not a fixation is a saccade or lost data). Because of this relation-
ship, scale free behaviors in saccades ought to be associated with
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scale free behaviors in fixations. Interestingly, in previous publica-
tions that examined the parameters for fixation identification, Shic
et al. [2008a; 2008b] showed that no natural discontinuities or mul-
timodality existed in the relationship between fixation identification
thresholds and fixation statistics. These results suggest that there is
a smooth property to these fixation statistics, which may be related
to scale free dynamics in viewing patterns.

In this paper, we use these insights to conduct a novel analysis on
the relationship between scale free behaviors in natural eye scan-
ning patterns and fixation identification algorithms. Specifically,
we show that aggregation of results from multiple applications of
a fixation identification algorithm bears striking similarity to box
counting techniques that are used in fractal dimensionality calcula-
tions. We examine the nature of this result and test the model on
scanning patterns of children and adults. We then discuss the rela-
tionship between this model and our previous work that examines
ties between fixation identification algorithm parameters and fixa-
tion statistics. Finally, we conclude with a discussion of the nature
of our hypothesis, the limitations of our work and of the hypothesis,
and offer suggestions for future research directions.

2 Fractal dimensionality as computed
through box counting

Mandelbrot applied the box counting method to Britain coastline
measurement and showed that a self-similar power law connects the
coastline length L and the scale unit s employed in its measurement:

L(s) ∼ s−α (1)

where the exponent α is positive if L increases as s decreases. To
illustrate the box counting technique [Schroeder 1999], We extract
the coastline of Great Britain from a postal map (UK postal ar-
eas, 2008) and replicated the well known results first highlighted
by Mandelbrot [1967], in Figure 2.

Dimensionality is an important property of fractals, such as the
Hausdorff dimension. GivenN(s) is the minimum number of disks
of diameter s needed to cover a contour fractal, the Hausdorff di-
mension can be calculated:

D = lim
s→0

logN(s)

log(1/s)
(2)

If we measure L in this manner, N(s) equals L(s)/s and the expo-
nent −α in Equation 1 is equal 1−D. Thus, the Hausdorff dimen-
sion is given by D = 1 − (−α), which, for α > 0, will exceed 1.

Figure 1: Left: Stimulated scan path with power-law step sizes.
Right: Simulated scan path with normally distributed steps.

For a smooth curve,D = 1; and for a smooth surface the numberN
of covering disks is proportional to 1/s2 and therefore D = 2. D
lies between 1 and 2 gives a infinitely long curve that is more than a
one-dimensional object, but without being a two dimensional area,
since the curve does not fully cover an area [Schroeder 1999].

In box counting, we superimpose a fixed grid of boxes of particular
lengths, which is equivalent to the disk in Hausdorff’s method, to
count the number of boxes N(s) which contain any of the coast-
line. As we can see from Equation 2, when s becomes very small,
logN(s)/log(1/s) converges to a finite value, the Hausdorff di-
mension D. Mandelbrot [1967; 1983] publicized the Hausdorff di-
mension of difference coasts and 2−dimentional borders, showing
that the dimensions ranged from smooth D ∼ 1 for the west coast
of South Africa, a ragged D ∼ 1.3 for the west coast of Britain,
with the distinction of the highest Hausdorff dimension going to
Norway with a D ∼ 1.52.

Figure 2: Left: Simple Box-counting of the coast of the U.K. The
number of boxes needed to cover the coastline increases as a power
law of the inverse of the size of the covering boxes. Middle: Num-
ber of boxes, N(s), of side-length s necessary to cover the coast
of Great Britain. Right: log-log plot of left graph, showing a very
linear relationship, suggesting a power law for the relationship be-
tween N(s) and s.

3 Multi-scale application of Fixation Identifi-
cation Alorithms and Fractal Box Counting

Though box-counting is typically associated with boxes, the cover-
ing object need not be a box [Falconer 2003; Klinkenberg 1994]. In
this section, we discuss how this insight furthers our understanding
of the relationships between fixation identification algorithms and
box counting methods.

A standard distance dispersion algorithm operates with two thresh-
olds [Salvucci and Goldberg 2000; Shic et al. 2008b]. The first,
a spatial parameter dmax, is the largest distance which any points
within a set of consecutive points obtained from an eye tracker are
separated. Moving outside of this range by any additional point
added temporally to the end of the consecutive set of points ends
the fixation, and starts a potential new fixation. The second thresh-
old, tmin, represents the shortest time that a fixation may last.
Any fixation that is determined to have a temporal extent less than
tmin is considered to be non-physiological and is thus discarded.
For simplification of our discussion, in this paper we will assume
tmin = 0ms, though we will return to this point in our discussions
of limitations.

It is important to note that most standard fixation identification al-
gorithms are greedy by nature. That is, as many points are added to
a growing potential fixation as possible, until the spatial threshold
is exceeded. At the top panel of Figure 3, we see how the greedy
distance fixation identification algorithm dissects a scanpath. The
algorithm begins by identifying a candidate point and then grows
as far as it can, temporally, until the next point is dmax away from
some point already covered by the spatio-temporal cylinder. It then
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begins at the next valid point and repeats. The total number of
cylinders needed to cover the trajectory is the total number of fix-
ations. Thus the distance algorithm, viewed from this light, is a
temporally-greedy version of box counting.

A distance dispersion algorithm using cylinders was applied to
cover an eye movement trajectory in Figure 3. The sampling rate of
eye tracking system is consistent, therefore the temporal dimension
of the eye movement trajectory was not discarded, but instead, was
compressed in a way that only the adjacent temporal sequence was
kept. With a compressed temporal dimension, the fixation number
counting is very similar to box counting of coastline length. We
examined the number of fixations N(s) as a function of the spa-
tial constraint parameter s = dmax under the distance-dispersion
fixation identification algorithm.

N(s) = As−α (3)

The bottom area of the cylinder is determined by its diameter, and
we have no maximum or minimum duration of this fixation iden-
tification algorithm, so the height of the cylinder can be arbitrary,
and the diameter of the bottom surface of the cylinder s is the factor
determining the counting results.

Figure 3: Effect of modifying spatial parameters on standard
greedy dispersion fixation algorithms. The gaze trajectory is shown
moving through time vertically and projects onto the face image
above and below. Top Left: With a large spatial parameter the
cylinder covering the gaze trajectory is thicker, and fewer cylin-
ders are needed to cover the trajectory. Top Right: With a smaller
spatial parameter more cylinders are necessary. Representative ex-
ample of a single trial. Bottom Left: Number of fixations N(s) as
a function of s, the size of the spatial parameter for the distance
algorithm (i.e. the maximal separating distance between points).
Bottom Right: log-log plot of the bottom left plot. The line between
points shows the theoretical line calculated by least-squares fit of a
line to the log-transform of the set of points.

Figure 4: Representative example of a single trial. Log-log plot
showing scaling between fixation size and fixation numbers. Top:
Children data. Bottom: Adult data. Left: Faces trials. Right:
Blocks trials. Note the stair-casing on the top left plot is due to
discretization (i.e. low counts at high spatial scales.

4 The Scaling Exponent of Free-scanning in
Children and Adults

We presented pictures of faces or block designs to 15 typically-
developing children (TD) at age 26.5 ± 4.2 months. Each image,
including the grey background, was 12.8◦ x 17.6◦. Eye-tracking
data were obtained simultaneously with a SensoMotoric Instru-
ments IView X RED table-mounted 60Hz eye-tracker. Stimulus
images were preceded by a central fixation to refocus the child’s
attention and were then displayed as long as was required for the
child to attend to the image for a total of 10 full seconds. Ac-
tual trials could last longer than 10 seconds; however, to maintain
comparability, only the first 10 seconds of stimulus presentation
were analyzed in this study. Subsequently, 46 trials were admitted
for blocks and 29 trials for faces (75 trials total). A representa-
tive example of one trial is shown in the bottom panels in Figure 3.
Theoretically recording a trajectory continuously is necessary for
us to measure the true scaling exponent of the eye movement data.
As a coarse approximation to continuous measurement and to pro-
vide comparability across the experiments in this section, we apply
linear interpolation to achieve approximately 1000Hz data (1ms
sampling interval) for all data analysis here.

The average R2 of the log-log linear regression was .98 (with
standard error σ = 0.01), with the minimum fit on any of the
75 trials being R2 = 0.94. The scaling exponent α differed
(F = 4.3, p < 0.05) between blocks (α = 1.28(±0.17)) and
faces (α = 1.19(±0.17)). The constant term (A in Equation 3) is
approximately the log of the total amount of time spent in scan-
ning and also differed (F = 7.4, p < 0.01) between blocks
(A = 4.33(±.28)) and faces (A = 4.14(±0.33)). A represen-
tative comparison is shown in the top panel of Figure 4. We note
that there appears to be individual variability in the scaling expo-
nents, suggesting potentially different scanning strategies for dif-
ferent individuals or differential interactions between participants
and presented stimuli.

To examine the nature of scanning on these stimuli in adults, we
present the same set of stimuli on an Eyelink remote eye track-
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Figure 5: The calculated scaling exponent of eye movement of six
different stimuli type in a database.Significant differences are found
between these groups, except for repetitive and stop motion stimuli
pair.

ing system (SR Research) with 500Hz sample rate. Images span
a visual angle of 13.4◦ x 17.8◦ vertically and horizontally in the
center of a 22 inches screen, and each trial lasts 10 seconds. We
have preliminary results of an adult participant, as shown in the
lower panel of Figure 4. The averageR2 of the regression was 0.99
(σ = 0.015), with the minimum 0.96 on any of the 8 trials. The
scaling exponent was α = 1.24 with σ = 0.06 for face trials, and
the exponent was α = 1.13 with σ = 0.05 for block trials.

Data set 3 reflected 14 adults free viewing 10 trials of human face
images with grey background using a SR Eyelink system, the same
stimuli and eye tracker as in our data set 2. This scaling exponent
α = 1.21(±0.19) is also consistent with the face section in data
set 1.

We applied this analysis to an online database [Dorr et al. 2010]
(data set 4), which includes eye movement data from 54 sub-
jects for 18 outdoor scenes, 2 Hollywood trailers, and static im-
ages taken from the outdoor scenes, with sampling rate of 250Hz.
The average exponent were α = 1.22 ± 0.14 for the Hollywood
movies, 1.09 ± 0.09 natural movies, 1.15 ± 0.12 for repetitive,
1.04± 0.11 for static images, 1.14± 0.08 for stop motion movies
and 1.06±0.11 additional stimuli respectively in the database. The
average and distribution of the individual trials is plotted in box
plots in Figure 5. We used a one way ANOVA with Bonferroni cor-
rection and find there is significant difference between these con-
ditions (with p < 0.015), except between repetitive and stop mo-
tion movies(p = 1). It is worth noticing that the average R2 of
the log-log linear regression was R2 = 0.99 (with standard error
σ = 0.01). The high R2 of regression shows the large data set still
follows the power-law property.

5 Number of fixations N(s) and mean fixa-
tion duration tdur

If we assume the total amount of time spent in fixations stays con-
stant, since the mean fixation duration is the total amount spent in
fixations divided by the number of fixations, we can approximate

Table 1: Four data set we applied. The second column is the stim-
uli; the third column is the participant number and their age group;
the fourth column is the sampling interval after linear interpola-
tion; the fifth column alpha is the scaling component (fractal dimen-
sionality); the sixth column is the A value; the R2 is the R square of
the log-log linear regression.

the mean fixation duration tdur as:

tdur(tmin, s) =
Ttotal
As−α

(4)

where Ttotal is the total time spent in fixations. Given that we have
conducted this analysis with no minimum fixation duration for the
distance-dispersion algorithm, i.e. tmin = 0 ms, no data should
be lost to saccades when calculating the total fixation duration. If
Ttotal is constant, then the inverse of the number of fixations N(s)
should appear linear without log-transformation. This is in fact the
case, as on the left of (Figure 6). It appears that linear trend seen
for mean fixation dependence on spatial thresholds s, as in previous
cylinder counting work.

To further examine how these parameters correspond to distribu-
tion aspects of scanning, we conducted a simple linear interpolation
model (SLIM) as proposed in [Shic et al. 2008a], with three coeffi-
cients being used to fit the mean fixation duration tdur : a temporal
slope, slopet, a spatial slope, slopes, and an offset, t0:

tdur(tmin, s) = slopet · tmin + slopes · s+ t0 (5)

The mean fixation duration of children viewing faces was calculated
and plotted on the right side of Figure 6, and the coefficients of the
SLIM are listed in Table 2. It is approximately linear in terms of
both slopes and slopet.

Since in this specific case, we have tmin = 0, we can eliminate the
partial derivative of tmin, and the spatial coefficient slopes can be
calculated as the derivative of the Equation 4:

slopes =
dtdur
ds

= Ksα−1 (6)

We can see that if α = 1, the slopes will be equal to the constant
K. In our previous fractal dimensionality analysis, we found that
both in adults and children’s free view eye movement, the exponent
term α, which is equivalent to the fractal dimensionality, is close to
1.

Given the total time is constant, the inverted number of fixations is
equivalent to mean fixation duration. The linearity between the log
of box size and the log of fixation time is consistent with the flat
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plane slope in the dimension of s. The fractal dimension analysis
also supports the linear model we used, as described in Equation 5.

Figure 6: Left: Inverse of the number of fixations as a function
of the scale of analysis. Right: Mean fixation duration of children
viewing faces for different algorithms as a function of spatial and
temporal parameters.

Table 2: Linear regression coefficients (slopet, slopes, and t0)
and regression explained variance (R2) of mean fixation duration
for distance dispersion, and two different stimulus types (Faces and
Blocks).

The temporal coefficient in Equation 5, slopet, characterizes how
the mean fixation duration increases as the minimum time require-
ment tmin increases. A larger temporal slope counter-intuitively
implies a greater loss of data: by removing fixations with shorter
durations, the average fixation duration tends to increase. This pro-
cess explains the discrepancy in temporal slopes for the velocity
algorithm as compared to dispersion algorithms (Table 2). The tem-
poral constraint for velocity algorithms is a pure rejection criterion;
by comparison, dispersion algorithms have a chance to partially re-
cover a fixation as the candidate fixation window slides. In terms
of scanpath effects, a larger temporal coefficient implies more non-
recoverable short-time fixations, i.e. short time fixations which are
separated by large distances. A full analysis of this coefficient will
require an analogous study examining the distribution of the du-
rations of fixations. Should this distribution be found to have a
particularly simple form, as we might expect, then the lost time to
saccades should be proportional to the integral of the duration dis-
tribution up until tmin.

We should note that the implications of grounding mean fixation du-
ration with a power-law for the number of fixations would suggest
that mean fixation duration is not exactly linear, though for practical
purposes it may be well modeled by a plane. The duration offset,
t0, in this case, the offsets observed may be associated with errors
caused by matching nonlinearities in the mean fixation duration. If
we examine the behavior of children in Table 2, there is a modu-
lation of coefficients as the stimulus changes from faces to blocks,
and a swap of these relationships between our adult data (data set
2). Again, an examination of these effects are topics for further in-
vestigations, but we note that specific interpretations of the scaling
exponent also will be related to interpretations of average fixation
durations in general [Wass et al. 2013], given the relationships de-

scribed in Equation 6.

6 Amplitude spectrum of natural images

Figure 7: Amplitude spectrum of the images used in our study. Top:
amplitude spectrum for faces, with α = 1.59, R2 = .998; Bottom:
amplitude spectrum for blocks, α = 1.40, R2 = .987.

If fractal patterns are associated with saccade and fixation behav-
iors, a natural question is to ask: what is the source of these pat-
terns, and how did these behaviors evolve to come to be? Some
work suggests that the answer to this question stems from the na-
ture of the natural visual world itself. For instance, the amplitude
spectrum of natural images has also been found to obey, on average,
a 1/f power-law relationship, with f the spatial frequency [Field
1987; Burton and Moorhead 1987; Tolhurst et al. 1992] though
there is considerable variation across image classes [Torralba and
Oliva 2003]. Similarly, the images that we presented to the partic-
ipants in our experiments also maintain these relationships, though
the power law relationship between spatial frequency and amplitude
is different for different stimuli classes (Figure 7). These findings
offer a tantalizing hypothesis that the scaling behaviors of proper-
ties of visual images may be tied to the scaling behaviors of eye
movements.

7 Discussion

To overcome some of the limitations of our specific equipment and
experimental setup, we used eye tracking data from four data sets,
one online database and three studies carried out in our lab. These
data sets include three different eye tracking systems, stimuli in-
cluding both movies and static images, and participants from two
age groups (toddlers and adults). Across these samples the same
kind of linearity was observed between the log of fixation size and
the number of fixations, suggesting a power law dependence be-
tween them. The exponent of adults’ data is of a similar magnitude
as the exponent in the children’s study, though we note that the vari-
ability of the exponent seems to be pervasive across even individ-
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ual trials, suggesting that it is not a stable property of individuals,
but rather a property of interactions between the individual and the
stimuli. Further work will have to decode the exact relationships
between observed scaling exponents, individual characteristics, and
stimulus properties.

Regarding the last point, it is an open question whether the power
law statistics of images under view correlate with the scaling pa-
rameters of natural scanning. Given the lawful behavior of scaling
in the scanning patterns of our participants, and the work accom-
plished by previous researchers, examining these properties within
the context of our analytical framework may yield new perspec-
tives on patterns of attention across development and the general
relationship between attention and cognition.

Eye movement patterns are task relevant, whereas cognitive exper-
iments usually have very different eye movement patterns as com-
pared with psychophysical experiments. The fixation properties we
calculated could also be relevant to our free-viewing task. It might
be possible that the free-viewing aspects of the experiment are re-
sponsible for the simple structure we observe for mean fixation du-
ration, and that the imposition of any greater experimental structure
would break this effect. However, it is important to note that reveal-
ing this would not be possible except by charting parameters as we
have suggested.

Additional limitations of this work include the fact that we are us-
ing binning and log binning to capture exponents related to scaling
behaviors. This is a known limitation that has plagued much of
the work examining the fractal properties of natural behaviors [Ed-
wards et al. 2007]. It is likely that maximum likelihood estimation
would improve the stability of our statistics, and this is a likely di-
rection for future work. However, the main point of this paper is not
that scanning patterns necessarily follow a Lévy flight or power-free
behavior in general, but rather that within a specific range of param-
eters, scanning patterns and scale free behavior seem to well model
the curves, and this modeling brings light to previous work that has
noted linear relationships between parameters and fixation identi-
fication statistics. In addition, our results lends additional support
to the idea that fixation properties are highly dependent on parame-
ter choices in general, and obey a continuous dependence on these
parameter choices. Though fixation statistics such as the mean fix-
ation duration and the number of fixations play a prominent role
in the interpretation of psychological and cognitive constructs, our
work suggests that caution may be warranted, as any specific se-
lection of parameter choices will vary the reported properties in a
systematic fashion.

Figure 8: With tmin = 20ms, nonlinearity can be observed in high
density sampled data (500Hz) in adult’s free viewing

As a final example of this point, we consider the actual effects of
tmin on the power law behaviors observed. If we manipulate tmin to
be anything other than 0, we begin to see nonlinearities form in the
number of fixations. An example of this phenomenon is shown in
Figure 8, where we can see with tmin = 20ms the log of the fixa-
tion spatial parameter and versus the log of the number of fixations
looks like an inverted V. The nonlinearity observed here is likely
due to the specific properties of fixation identification algorithms.
As the spatial parameter decreases, fixations will have smaller and
smaller spatial widths, confining the number of fixation points that
are likely to comprise individual fixations. Because the number of
points within each fixation is reduced, the average time spent within
each fixation will also decrease, all things being equal.

At some lower limit, microsaccadic behavior, tremor, and oculomo-
tor drift begin to impact fixation statistics, as does the general pres-
ence of experimental noise, as described in Martinez-Conde et al.’s
papers [2009; 2013]. In any event, the interaction between these
temporally shorter fixations and any temporal minimum threshold
on fixations will tend to throw out these small fixations, leading
to the curvature observed. It is not clear as of yet how this phe-
nomenon should be modelled, and it is not clear how the mean fix-
ation duration is impacted within this range. While it is inversely
related to the number of fixations, it is also affected by the total
recording time, which is steadily decreased in the presence of more
fixation rejections. What is clear is that if tmin truly makes phys-
iological sense, there appears to be a limit by which, depending
on the spatial parameter, power law dynamics may no longer hold.
This is an area of ongoing investigation which should lead to bet-
ter, more stable measures for use with eye tracking and thus more
robust and replicable interpretations of associated cognitive and be-
havioral phenomenon.

8 Conclusion

We have adopted standard fixation algorithms to perform box-
counting, a technique for measuring fractal dimension. We have
shown that the scanning patterns of typically developing toddlers
may have fractal qualities. We suggest that scale-free qualities of
the scan pattern distribution may be one reason why an optimal set
of parameters for fixation identification does not exist. We note that
although other distributions may fit the scanning pattern data better
[Edwards et al. 2007], a simple power law also represents the data
well. Regardless of the exact underlying statistical distribution, it is
clear that scanning patterns exhibit lawful, smooth and continuous
properties. It is our hope that future studies with larger populations
and extended experimental conditions will bear out the main results
of this study and provide further insights into the nature of our find-
ings.
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